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APPENDIX A
TAXONOMY CATEGORIZATION

Here, we provide more detailed descriptions of how we
categorize the axes and factors in ‹-Gen based on the com-
binations of policy modalities they affect.
Visual: Factors and axes in this category modulate the image
inputs of the initial state, but do not affect the required
behavior in the base task or the language instruction. Example
factors include lighting, camera pose, and distractor objects
(see the green sector of Fig. 1).
Semantic: Semantic factors and axes modulate the language
instruction without changing the initial image or required
behavior. Example factors include replacing verbs with syn-
onyms, and changing the instruction to use spatial relationships
such as “in the ” (see the orange sector of Fig. 1).
Behavioral: Behavioral factors and axes only affect required
behavior without affecting policy inputs. Therefore, all isolated
behavioral factors are necessarily unobserved from single
observations. Example factors include changes to object mass
or friction (see the blue sector of Fig. 1). These factors are
often challenging for policies due to their unobservability.
Visual + Behavioral: These factors and axes affect the initial
image and required behavior, without changing the language
instruction. As we show in Section IV-B, many factors that
prior work consider as “behavior” generalization fall into this
category [6, 13]. Example factors include manipulated object
poses and surface/table heights (see the cyan sector of Fig. 1).
Semantic + Behavioral: These factors and axes affect the lan-
guage instruction and required behavior, without affecting the
initial image. Example factors include changing the speed of
a behavior (“quickly” vs. “slowly”) in language, or specifying
prepositional phrases like “into” or “in front of” that change
the required behavior (see the purple sector of Fig. 1).
Visual + Semantic: These factors and axes affect the initial
image and language instruction, without requiring change to
behavior. An example of this would be if the base instruction
is “pick up the purple cup” and the cup changes color to blue,
changing the instruction to “pick up the blue cup”. This is still
an atomic perturbation, but since the color was specified in the
original instruction, the instruction must also be changed. Had
the initial instruction been “pick up the cup” and the cup was
already blue, then this would be a semantic perturbation. See
the brown sector of Fig. 1.
Visual + Semantic + Behavioral: This category of factors
and axes affect all three modalities at once. An example is
going from “pick up the carrot” to “pick up the zucchini” –
this affects the initial image, the language, and the behavior
required to pick up the new object.

APPENDIX B
FREQUENTLY ASKED QUESTIONS

Here, we provide answers to several possible questions
readers may have about our taxonomy and its assumptions.

Q: Is ‹-Gen meant to be comprehensive?

A: The axes presented in ‹-Gen are meant as a starting point
for the field, and although we did our best to make this list
comprehensive, there could certainly exist other meaningful
axes. In contrast, we consider the categories in ‹-Gen (e.g.,
visual + behavioral) to be exhaustive for the policies we con-
sider, since they are built from the seven unique combinations
of our policy modalities.

Q: Are the axes and factors in ‹-Gen subjective?
A: Yes, the axes and factors in ‹-Gen are human-specified in
a subjective manner, so there are certainly other ways to group
perturbations into factors, and factors into axes. However, our
goal is not to design an objective way to categorize gener-
alization, as this is an inherently subjective process. Instead,
we aim to provide greater structure and comprehensiveness
when categorizing generalization using human interpretable
concepts, like “task-relevant objects” and “verbs”.

Q: What is the purpose of defining a taxonomy if it is
inherently subjective?
A: As we will see in Section V, our taxonomy gives us the ver-
nacular to discuss more fine-grained types of generalization.
We intend this taxonomy to be a starting point for practitioners
to gain greater insights about their models, and recognize the
potential for reshaping our taxonomy as our understanding of
how to effectively evaluate generalization grows.

Q: Is each axis equally important for generalization?
A: Whether or not an axis is “important” is very subjective,
and depends on specific applications. Instead, we categorize
different types of generalization more systematically to aid
researchers and practitioners in evaluating their robot policies
based on the needs of their downstream applications.

Q: Can you quantify how much different perturbations affect
a base task?
A: It would be interesting to consider the “edit distance” that
a perturbation induces, to quantify how much generalization
is required. However, we do not consider this in ‹-Gen, due
to the challenging nature of defining such distances. Some
options for this could include image or text embeddings for
visual or semantic perturbations, dynamic time warping [50]
for behavioral, or foundation models. Future work can inves-
tigate correlating such metrics with empirical generalization.

APPENDIX C
CASE STUDY 1: BRIDGEV2-‹

A. Base Tasks
We consider the following four base tasks in our evaluation

for BridgeV2-‹:
1) Put carrot on plate.
2) Put knife on plate.
3) Flip pot upright.
4) Put plate in sink.
Each task is instantiated in a replication of a sink environ-

ment that was used in Bridge V2, and was also used to evaluate
generalization in prior work [13]. We tuned the environment
conditions such that the publicly released OpenVLA 7B model
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trained on OXE was able to achieve reasonable zero-shot
performance on the “put carrot” and “put knife” tasks, in order
to increase the likelihood of transfer from the pre-training
data for generalization. However, there are inevitably some
minor differences from this environment and what was used to
collect data in Bridge V2, such as in camera pose or lighting.
While we could have chosen base tasks in an environment
that deviates more from the pre-training data, this would have
likely led to much weaker levels of generalization in our
evaluation, which would make our results less informative.

The base tasks “put carrot” and “put knife” are both
instantiated from the same initial configuration. “flip pot” and
“put plate” are also both instantiated from the same initial
configuration. We do this to increase the difficulty and realism
for semantic generalization, because having multiple tasks
from the same initial configuration makes it so that policies
must understand the language instruction to know which of the
tasks to perform. Therefore, the policy cannot simply ignore
the language instruction and memorize which task to perform
based on the visual appearance of the scene.

We choose these specific tasks to cover different levels of
alignment with the demonstrations from Bridge V2 for this
sink environment. We describe how each base task deviates
from the support of these demonstrations, and how the publicly
released OpenVLA model performs on them, as follows:

1) Put carrot on plate: This language instruction is found in
Bridge V2 demonstrations for our sink environment. The
carrot is different from the one in these demonstrations,
but is of similar appearance and geometry. The plate is
also different, with a different color, but similar geometry.
The initial pose of the carrot and plate are significantly
different than in any demonstration, but similar poses for
other task-relevant objects are found in other demonstra-
tions for this environment for similar tasks (e.g., “put
knife on cutting board”). We find that OpenVLA is able
to somewhat reliably perform this task zero-shot.

2) Put knife on plate: This language instruction is not found
in Bridge V2 demonstrations for our sink environment,
but demonstrations with similar instructions are (e.g., “put
carrot on plate”, ”put knife on cutting board”). The knife
is different from the one in these demonstrations, but is
of similar appearance and geometry. The plate is also
different, with a different color, but similar geometry.
Similar initial poses for task-relevant objects are found in
demonstrations for the task “put knife on cutting board”
in this sink environment. We find that OpenVLA is able
to somewhat reliably perform this task zero-shot.

3) Flip pot upright: This language instruction is found in
Bridge V2 demonstrations for our sink environment. The
pot used is significantly different from the one used in
these demonstrations (e.g., it is plastic instead of metal,
and has different geometry). The initial pose of the pot is
also somewhat different. We find that OpenVLA is able
to rarely perform this task zero-shot.

4) Put plate in sink: This language instruction is not
found in Bridge V2 demonstrations for our sink envi-
ronment. However, there is a somewhat similar language
instruction in Bridge V2 for a slightly different sink

environment (“put cup from anywhere into sink”). The
initial pose, appearance, and geometry of the plate is
significantly different than in any task demonstrations
for our sink environment. We find that OpenVLA is
unable to perform this task zero-shot, and exhibits largely
meaningless behavior.

We aim to minimize variation in the initial state distribution
for each base task (e.g., by attempting to always initialize
objects with the same pose). However, in practice there will
always be some level of variation in real world experiments
such as ours. We aim to minimize variation in order to simplify
our experimental setup and to more easily isolate the effect
of our considered perturbations. However, our taxonomy and
evaluation framework is more general and can be applied to
base tasks with greater variation in initial states.

B. Evaluation Procedure Details
We perform our evaluations by executing each policy until

either the policy succeeds as deemed by a human evaluator,
it reaches a dangerous or irrecoverable state, or terminates
after 100 timesteps. For tasks that involve placing an object
on another object or surface, we consider success to be if
the object is on top of the other object/surface in a stable
configuration, and the object is not grasped by the robot. For
tasks that involve placing an object on a plate, the plate must
also not be knocked over from its initial position. For tasks that
involve flipping a container upright, the base of the container
must make contact with the base of the sink, the container
must be in a stable configuration, and the container must not
be grasped by the robot.

We aim to minimize differences between our evaluation
conditions and in-domain training data, beyond the differences
introduced by a specified perturbation. To do this, we periodi-
cally check the image difference between live observations and
the base task demonstration data, and adjust the environment
to minimize this when the difference is significant. We do this
so that our evaluations are only reflective of generalization to a
specified perturbation, and not other inadvertent changes [51].

C. Co-fine-tuning vs. Fine-tuning
For our evaluations, we incorporate in-domain data into each

model by co-fine-tuning with the model’s pre-training data.
We do this to help preserve each model’s original capabilities,
to promote generalization and fair comparison of each model.
However, this procedure may become impractical as robot pre-
training datasets become larger in size, or if they are not
openly available. One could also consider evaluating these
models by only fine-tuning on in-domain data, without any
pre-training data. However, this should be done carefully to
avoid catestrophic forgetting. We leave exploration of best
practices for fine-tuning generalist policies, and comparing the
generalization of such fine-tuned policies, to future work.

D. In-Domain Data
We collect demonstrations for our in-domain data using

a Meta Quest VR headset. For consistency, we collect all
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our data using a single experienced human teleoperator. For
the “put carrot” and “put knife” base tasks, we collect 10
demonstrations per base task. For the “flip pot” and “put
plate” base tasks, we collect 50 demonstrations per base task,
because we found that more demonstrations were needed for
satisfactory in-distribution performance of models.

E. Model Details

General Training Details. Unless otherwise stated, for all
co-fine-tuned models (designated with FT), we co-fine-tune
for 5K gradient steps (which we found was sufficient for
convergence of most models) with a batch size of 256 and
a learning rate of 1e ´ 6. We adopt a smaller learning rate
than what was used during pre-training because we found
higher learning rates tend to degrade training metrics on
the pre-training dataset. We use the Adam optimizer for all
training. When co-fine-tuning, we normalize the in-domain
dataset using the dataset statistics from Bridge V2.

For each model type, we co-fine-tune two separate models:
one for the “put carrot” and “put knife” base tasks, and
another for the “flip pot” and “put plate” base tasks. We do
this because we had already trained and partially evaluated
models co-fine-tuned only on “put carrot” and “put knife”
before expanding our base task selection to include the others.
However, it would also been fine to co-fine-tune models on
all base tasks together. When co-fine-tuning models for the
“put carrot” and “put knife” base tasks, we upsample the
in-domain data by 100x relative to the pre-training data. For
the ”flip pot” and ”put plate” base tasks, we upsample the
in-domain data by 50x.

We describe the specific training details of each model we
consider in our experiments below:

OpenVLA (OXE). We use the publicly released OpenVLA
7B model trained on a mixture of data from OXE [13].

OpenVLA (OXE, FT). We co-fine-tune OpenVLA (OXE) on
a combination of the same OXE mixture used to originally
train the model (except DROID [11]), as well as the in-domain
data for a given set of base tasks.

OpenVLA (Bridge, FT). We first pre-train a version of
OpenVLA 7B on Bridge V2 for 200K gradient steps with
a batch size of 256. We then co-fine-tune with Bridge V2.

OpenVLA (Bridge, Rand Init, FT). We first pre-train a
version of OpenVLA 7B on Bridge V2, except we initialize the
model from random weights, rather than a pre-trained vision-
language model. We pre-train for 200K gradient steps with a
batch size of 256. We then co-fine-tune with Bridge V2.

OpenVLA (Bridge, VQA, FT). We first pre-train a version
of OpenVLA 7B on Bridge V2 and the VQA dataset used
for training LLaVA-1.5 ([52]). This is a subset of the dataset
used for training the base Prism-7B used for initializing
OpenVLA [53]. We set of 20% of our pre-training mixture
to consist of VQA data. We pre-train for 200K gradient steps
with a batch size of 256. We then co-fine-tune with Bridge
V2, again using 20% VQA data.

MiniVLA (Bridge, FT). We start from the publicly released
MiniVLA model trained on Bridge V2 [38], and then co-fine-
tune this model with Bridge V2. We increase the amount of
gradient steps during co-fine-tuning from 5K to 10K, which
was necessary for convergence. During inference, we only
execute the first action from each predicted action chunk.
MiniVLA (Bridge, No VQ, FT). We first pre-train a ver-
sion of MiniVLA that uses the binning-based tokenizer from
OpenVLA rather than the vector quantized action chunking
tokenizer used in MiniVLA. We pre-train on Bridge V2 for
300K gradient steps with a batch size of 256 and learning rate
of 2e ´ 5, and then co-fine-tune with Bridge V2.
⇡0 (Bridge, FT). We use the ⇡0 reimplementation from
https://github.com/allenzren/open-pi-zero [39]. We start from
the publicly released checkpoint pre-trained on Bridge V2
using beta timestep sampling, and then co-fine-tune this model
with Bridge V2. We co-fine-tune for 80K training steps and a
learning rate of 1e´5, with a linear warmup of 200 steps. We
found it was necessary to increase the in-domain upsampling
rate to 1000x relative to Bridge V2 for “put carrot” and “put
knife”, and 500x for ”flip pot” and ”put plate”, in order to fit
the in-domain data more efficiently. During inference, we only
execute the first action from each predicted action chunk.

Unlike all other models, this model was pre-trained using
image augmentation (random crop, lighting, and color). During
co-fine-tuning, we remove image augmentation to increase
training speed. Furthermore, this model only uses trajectories
from Bridge V2 that have language annotations.

Fig. 11: We find that co-fine-tuning on in-domain data for our
base tasks significantly improves both in-distribution perfor-
mance of OpenVLA, as well as many of our axes.

F. Impact of In-Domain Data
To motivate our choice to assess generalization by com-

paring models co-fine-tuned on in-domain base task data, in
Fig. 11 we compare the publicly released OpenVLA 7B model

https://github.com/allenzren/open-pi-zero
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zero-shot, and the same model co-fine-tuned with in-domain
data, for the “put carrot” and “put knife” tasks. We fine that
co-fine-tuning significantly improves both in-distribution base
task performance and multiple axes of generalization. This
highlights the importance of co-fine-tuning on base task data
in order to properly define base tasks as in-distribution. Oth-
erwise, it is likely there will be some significant distribution
shift between the pre-training data and the chosen base tasks
for evaluation. As a result, performance in general will suffer,
making evaluation of generalization more challenging.

G. Random Initialization
In addition to our reported results, we additionally attempted

to evaluate OpenVLA (Bridge, Rand Init, FT), a model with
the same architecture as OpenVLA, but trained from randomly
initialized weights, rather than pre-trained VLM weights.
Although training metrics on Bridge V2 and our in-domain
data did converge, we found that the model failed completely
to succeed at our in-distribution base tasks. Therefore, we did
not consider this model in our evaluations.

H. Evaluation Conditions
We detail every generalization condition we consider in our

evaluation, including scene images, names for each evaluation
condition, axes, language instructions, and additional notes.
We provide this information for the main evaluations based
on the ”put carrot” and ”put knife” tasks in Table IV, for
the ”flip pot” and ”put plate” tasks in Table V, and for the
compositional evaluations in Table VI.
Implementation Details. For the generalization conditions
that involve recoloring the sink (Carrot Red Sink, Knife Red
Sink, Pot Green Sink, Plate Green Sink), we do not physically
change the sink color. Instead, we preprocess each image
frame given to the policy using SAM 2.1 Large [54] to segment
the sink, and then recoloring these pixels to the desired color.

For the generalization conditions that make the sink table
shorter relative to the robot (Carrot Shorter Table, Knife
Shorter Table, Pot Shorter Table, Plate Shorter Table), rather
than lowering the sink table, we raise the table that the robot
is mounted on, which achieves the same effect.
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Scene Image Condition Name Axis Language Instruction Notes

Carrot Base In-distribution put carrot on plate N/A

Knife Base In-distribution put knife on plate N/A

Carrot Color S-PROP put the orange object
on the plate refers to carrot by color

Knife Color S-PROP put the gray and green
object on the plate refers to knife by color

Carrot Lift/Place S-LANG lift carrot and place on plate replaced verb “put”
using “lift” and “place”

Knife Lift/Place S-LANG lift knife and place on plate replaced verb “put”
using “lift” and “place”

Carrot Counter S-MO put the object that is
on the counter on the plate

refers to carrot by
location (on counter)

Knife Sink S-MO put the object that is
in the sink on the plate

refers to knife
by location (in sink)

Carrot Basketball S-INT put the object that is the same
color as a basketball on the plate

refers to carrot by color
of a basketball (orange)

Knife Typo S-INT put knif on plate “knife” misspelled as “knif”

Carrot in Sink SB-SMO put carrot in sink goal for carrot is
sink instead of plate

Rotate Knife SB-VRB rotate knife clockwise rotate knife instead
of put on plate

Carrot Distractors V-SC put carrot on plate distractor objects
(corn, salt shaker)

Knife Distractors V-SC put knife on plate distractor objects
(corn, salt shaker)

Carrot Red Sink V-SC put carrot on plate red sink

Knife Red Sink V-SC put knife on plate red sink

Carrot Orange Plate V-OBJ put carrot on plate orange plate

Knife Orange Plate V-OBJ put knife on plate orange plate

Carrot Camera V-VIEW put carrot on plate new camera pose

Knife Camera V-VIEW put knife on plate new camera pose

TABLE IV: Generalization conditions for “put carrot” and “put knife”.
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Scene Image Condition Name Axis Language Instruction Notes

Carrot Farther VB-POSE put carrot on plate carrot slightly farther
from robot

Carrot Start Sink VB-POSE put carrot on plate carrot start in sink,
oriented vertically

Knife Raised VB-POSE put knife on plate knife raised by
placing it on a block

Knife Right VB-POSE put knife on plate knife moved to the right

Carrot Shorter Table VB-ISC put carrot on plate shorter sink table

Knife Shorter Table VB-ISC put knife on plate shorter sink table

Baby Carrot VB-MOBJ put carrot on plate real baby carrot

Small Knife VB-MOBJ put knife on plate smaller knife

TABLE IV: Generalization conditions for “put carrot” and “put knife”.
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Scene Image Condition Name Axis Language Instruction Notes

Ball VSB-NOBJ put ball on plate carrot replaced with ball

Pizza VSB-NOBJ put pizza on plate knife replaced with pizza

TABLE IV: Generalization conditions for “put carrot” and “put knife”.
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Scene Image Condition Name Axis Language Instruction Notes

Pot Base In-distribution flip pot upright
which is in sink N/A

Plate Base In-distribution put plate in sink N/A

Pot Color S-PROP flip the gray object upright
which is in sink refers to pot by color

Plate Color S-PROP put the pink object
in the sink refers to plate by color

Pot Lift/Place S-LANG lift pot upright
and place in sink

replaced verb “flip”
using “lift” and “place”

Plate Lift/Place S-LANG lift plate and place in sink replaced verb “put”
using “lift” and “place”

Pot Sink S-MO flip the object that is
in the sink upright

refers to pot by
location (in sink)

Plate Drying Rack S-MO put the object that is in
the drying rack in the sink

refers to plate by
location (in drying rack)

Pot Boiling S-INT flip the object that can be
used for boiling water upright

refers to pot by ability
to boil water

Plate Typo S-INT put plait on plate “plate” misspelled as “plait”

Plate to Counter SB-SMO put plate on counter goal for plate is
counter instead of sink

Pot to Left SB-VRB move pot to the
left side of the sink

move pot left instead
of flip upright

Pot Distractors V-SC flip pot upright
which is in sink

distractor objects
(eggplant, fork, cheese)

Plate Distractors V-SC put plate in sink distractor objects
(eggplant, fork, cheese)

Pot Green Sink V-SC flip pot upright
which is in sink green sink

Plate Green Sink V-SC put plate in sink green sink

Gray Plate V-OBJ put plate in sink gray plate

Pot Camera V-VIEW flip pot upright
which is in sink new camera pose

Plate Camera V-VIEW put plate in sink new camera pose

TABLE V: Generalization conditions for “flip pot” and “put plate”.
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Scene Image Condition Name Axis Language Instruction Notes

Pot Left VB-POSE flip pot upright
which is in sink pot moved to left

Pot Angled VB-POSE flip pot upright
which is in sink

pot rotated and
angled to the right

Plate Closer VB-POSE put plate in sink plate slightly
closer to robot

Plate Counter VB-POSE put plate in sink plate flat on counter

Pot Shorter Table VB-ISC flip pot upright
which is in sink shorter sink table

Plate Shorter Table VB-ISC put plate in sink shorter sink table

Thin Pot VB-MOBJ flip pot upright
which is in sink

thinner and taller
metal pot

Red Bowl VB-MOBJ put plate in sink plate replaced
with red bowl

TABLE V: Generalization conditions for “flip pot” and “put plate”.
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Scene Image Condition Name Axis Language Instruction Notes

Cup VSB-NOBJ flip cup upright
which is in sink pot replaced with cup

Spoon VSB-NOBJ flip pot upright
which is in sink plate replaced with spoon

TABLE V: Generalization conditions for “flip pot” and “put plate”.

Scene Image Condition Name Axis Language Instruction Notes

Carrot Color +
Lift/Place S-PROP + S-LANG lift the orange object

and place on plate
refers to carrot by color
and replaced verb “put”
using “lift” and “place”

Knife Color +
Lift/Place S-PROP + S-LANG lift the gray and green

object and place on plate
refers to knife by color
and replaced verb “put”
using “lift” and “place”

Carrot Distractors +
Orange Plate V-SC + V-OBJ put carrot on plate

distractor objects
(corn, salt shaker)
and orange plate

Knife Distractors +
Orange Plate V-SC + V-OBJ put knife on plate

distractor objects
(corn, salt shaker)
and orange plate

Carrot Farther +
Shorter Table VB-POSE + VB-ISC put carrot on plate

carrot slightly farther
from robot and

shorter sink table

Knife Right +
Shorter Table VB-POSE + VB-ISC put knife on plate knife moved to right and

shorter sink table

TABLE VI: Generalization conditions for compositional experiments.
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I. More Evaluation Results
1) Composition: We conduct additional evaluations on

compositions of our Table VII. We once again see that training
on the larger OXE mixture seems to improve many seman-
tic axes, specifically the composition of referring to object
properties in language and rephrasing language instructions (S-
PROP + S-LANG), possibly due to a larger variety of language
instructions in the training data. Furthermore, some models
are fairly robust to combinations of distractors and object
colors (V-SC + V-OBJ), with MiniVLA and ⇡0 being the most
performant, similarly as in the main results. Some models
are also surprisingly robust to the composition of different
object poses and scene factors (VB-POSE + VB-ISC), with
⇡0 performing the best in this setting.

2) Detailed Results: We provide individual success rates
for all generalization conditions listed in Appendix C-H. We
provide this for the main evaluations based on the “put carrot”
and “put knife” tasks in Table VIII, for the “flip pot” and “put
plate” tasks in Table IX, and for the compositional evaluations
in Table X.
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OpenVLA
(OXE)

OpenVLA
(OXE, FT)

OpenVLA
(Bridge, FT)

OpenVLA
(Bridge, VQA, FT)

MiniVLA
(Bridge, FT)

MiniVLA
(Bridge, –VQ, FT)

⇡0 Reimplement
(Bridge, FT)

Semantic
(S-PROP + S-LANG) 6/10 8/10 4/10 0/10 4/10 2/10 1/10

Visual
(V-SC + V-OBJ) 3/10 6/10 5/10 6/10 8/10 5/10 7/10

Visual + Behavioral
(VB-POSE + VB-ISC) 5/10 6/10 3/10 7/10 5/10 6/10 8/10

Overall 14/30 20/30 12/30 13/30 17/30 13/30 16/30

TABLE VII: Compositional results for two axes from each of semantic, visual, and visual + behavioral.

Condition
Name

OpenVLA
(OXE)

OpenVLA
(OXE, FT)

OpenVLA
(Bridge, FT)

OpenVLA
(Bridge, VQA, FT)

MiniVLA
(Bridge, FT)

MiniVLA
(Bridge, FT, -VQ)

⇡0 Reimplment
(Bridge, FT)

Carrot Base 3/5 5/5 3/5 4/5 5/5 4/5 4/5
Knife Base 2/5 3/5 5/5 5/5 5/5 4/5 5/5

Carrot Color 2/5 4/5 4/5 2/5 2/5 2/5 2/5
Knife Color 2/5 3/5 0/5 0/5 0/5 0/5 0/5

Carrot Lift/Place 3/5 5/5 2/5 4/5 5/5 3/5 5/5
Knife Lift/Place 2/5 4/5 4/5 3/5 4/5 1/5 5/5
Carrot Counter 0/5 0/5 0/5 0/5 0/5 0/5 0/5

Knife Sink 1/5 2/5 1/5 3/5 0/5 0/5 3/5
Carrot Basketball 0/5 0/5 0/5 1/5 0/5 0/5 0/5

Knife Typo 1/5 4/5 4/5 4/5 1/5 1/5 4/5
Carrot in Sink – – 5/5 – 5/5 – 3/5
Rotate Knife – – 1/5 – 0/5 – 0/5

Carrot Distractors 3/5 5/5 3/5 3/5 3/5 2/5 4/5
Knife Distractors 1/5 3/5 2/5 3/5 5/5 3/5 4/5
Carrot Red Sink 3/5 3/5 1/5 3/5 3/5 1/5 5/5
Knife Red Sink 1/5 3/5 2/5 2/5 3/5 4/5 2/5

Carrot Orange Plate 2/5 3/5 2/5 3/5 4/5 0/5 3/5
Knife Orange Plate 4/5 4/5 2/5 4/5 5/5 5/5 5/5

Carrot Camera 0/5 0/5 0/5 0/5 1/5 0/5 0/5
Knife Camera 0/5 0/5 0/5 0/5 1/5 0/5 5/5
Carrot Farther 2/5 3/5 2/5 4/5 3/5 3/5 2/5

Carrot Start Sink 3/5 3/5 3/5 2/5 5/5 3/5 5/5
Knife Raised 0/5 2/5 3/5 4/5 4/5 3/5 1/5
Knife Right 2/5 3/5 3/5 5/5 4/5 2/5 5/5

Carrot Shorter Table 2/5 5/5 2/5 4/5 3/5 4/5 5/5
Knife Shorter Table 0/5 3/5 3/5 3/5 2/5 2/5 5/5

Baby Carrot 0/5 0/5 0/5 0/5 1/5 0/5 1/5
Small Knife 0/5 0/5 1/5 0/5 0/5 0/5 0/5

Ball – – 0/5 – 3/5 – 1/5
Pizza – – 1/5 – 0/5 – 0/5

TABLE VIII: Detailed generalization results for “put carrot” and “put knife”.
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Condition
Name

OpenVLA
(Bridge, FT)

MiniVLA
(Bridge, FT)

⇡0 Reimplment
(Bridge, FT)

Pot Base 3/5 5/5 5/5
Plate Base 3/5 4/5 4/5
Pot Color 4/5 1/5 1/5

Plate Color 0/5 0/5 0/5
Pot Lift/Place 0/5 2/5 1/5

Plate Lift/Place 0/5 0/5 0/5
Pot Sink 1/5 1/5 5/5

Plate Drying Rack 0/5 0/5 0/5
Pot Boiling 0/5 0/5 0/5
Plate Typo 0/5 0/5 0/5

Plate to Counter 0/5 0/5 0/5
Pot to Left 0/5 2/5 0/5

Pot Distractors 3/5 4/5 5/5
Plate Distractors 3/5 1/5 0/5
Pot Green Sink 3/5 3/5 4/5

Plate Green Sink 2/5 1/5 3/5
Gray Plate 4/5 3/5 3/5
Pot Camera 0/5 1/5 0/5

Plate Camera 0/5 0/5 0/5
Pot Left 3/5 0/5 0/5

Pot Angled 3/5 3/5 5/5
Plate Closer 0/5 3/5 4/5

Plate Counter 2/5 0/5 0/5
Pot Shorter Table 5/5 2/5 5/5

Plate Shorter Table 3/5 0/5 2/5
Thin Pot 3/5 0/5 1/5

Red Bowl 0/5 2/5 5/5
Cup 3/5 0/5 3/5

Spoon 0/5 0/5 0/5

TABLE IX: Detailed generalization results for “flip pot” and “put plate”.

Condition
Name

OpenVLA
(OXE)

OpenVLA
(OXE, FT)

OpenVLA
(Bridge, FT)

OpenVLA
(Bridge, VQA, FT)

MiniVLA
(Bridge, FT)

MiniVLA
(Bridge, FT, No VQ)

⇡0 Reimplment
(Bridge, FT)

Carrot Color +
Lift/Place 3/5 4/5 4/5 0/5 4/5 2/5 1/5

Knife Color +
Lift/Place 3/5 4/5 0/5 0/5 0/5 0/5 0/5

Carrot Distractors +
Orange Plate 1/5 4/5 2/5 3/5 3/5 0/5 3/5

Knife Distractors +
Orange Plate 2/5 2/5 3/5 3/5 5/5 5/5 4/5

Carrot Farther +
Shorter Table 3/5 3/5 3/5 3/5 2/5 3/5 3/5

Knife Right +
Shorter Table 2/5 3/5 0/5 4/5 3/5 3/5 5/5

TABLE X: Detailed results for our compositional evaluation.
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Fig. 12: Example of using our demonstration to generate New Object perturbations for the base task “pick up the AAA battery”.

APPENDIX D
AUTOMATIC BENCHMARK DESIGN

We intend for ‹-Gen to provide guidance for more extensive
and fine-grained evaluations of generalist robot policies. How-
ever, we acknowledge that the evaluation conditions consid-
ered in BridgeV2-‹, while based on ‹-Gen, were still chosen
using human oversight. We believe that it would be beneficial
to limit human involvement when constructing future evalu-
ations, because it can require a significant amount of human
effort to design a thorough set of evaluation conditions, and
human involvement can result in bias, even if unintentional.

Therefore, we make a preliminary step towards reducing
human involvement in robot benchmark design by using foun-
dation models to automatically propose evaluation conditions.
In particular, we condition a vision-language model (VLM)
on a base task, and ask it to propose perturbations of the base
task to evaluate a given axis of generalization from ‹-Gen.

To do this, we prompt the VLM with an initial scene image
for the base task, as well as a text prompt that consists of
the base task language instruction, and directions for how to
modify the task according to a given axis from ‹-Gen. If the
axis is visual, we ask the VLM to specify the perturbation as
an instruction for an image-editing model that would perform
the perturbation. If the axis is semantic, we ask for the VLM
to generate new language instructions for the perturbed tasks.
The VLM can generate both image edits and new language
instructions if the given axis is both visual and semantic.

We developed an interactive demonstration of this system
where users can provide their own base tasks (as initial scene
images and language instructions) on our website. We use
Gemini 2.0 Flash as our VLM. For more reliable generations,
we configure Gemini to generate perturbed tasks as JSON,
using a specified schema. We instantiate the system for the
following 5 ‹-Gen axes:

1) Visual Task Object (V-OBJ)
2) Object Properties (S-PROP)
3) Object Poses (VB-POSE)
4) Action Verbs (SB-VRB)

This is an image of a scene where a robot is to
complete the task “put carrot on plate”. Suggest 3
changes to the task that each involve changing a single
task-relevant object to a new object with a different
visual appearance, semantic description, and physi-
cal characteristics. Do this by providing 3 updated
language instructions for each of the modified tasks,
and corresponding text prompts to an image-editing
model that would each perform a single change to the
scene to create the modified task. Remember to only
change one object, and to only change an object that
is involved in the task.

Fig. 13: Example text prompt for generating perturbations of
the base task “put carrot on plate” for the axis New Object.

import { SchemaType } from "@google/generative-ai";

const visualSemanticSchema = {

description: "Visual and language instruction changes for a task.",

type: SchemaType.ARRAY,

items: {

type: SchemaType.OBJECT,

properties: {

visualChange: {

type: SchemaType.STRING,

description: "Text prompt for an image-editing model to modify the task",

nullable: false,

},

languageChange: {

type: SchemaType.STRING,

description: "Updated language instruction for the modified task",

nullable: false,

},

},

required: ["visualChange", "languageChange"],

},

};

Fig. 14: Node.js JSON schema used for Gemini API to
generate perturbations that are both visual and semantic, such
as those for the axis New Object.

5) New Object (VSB-NOBJ)
In Fig. 12, we provide an example screenshot of the demon-
stration used to generate perturbations for a base task that was
not used in BridgeV2-‹. In Fig. 13, we provide an example
text prompt used for the axis New Object, and in Fig. 14 we
provide the Node.js JSON schema used for this axis.
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